Conditional Cube Attacks on KECCAK-*p* Based Constructions

Ling Song, Jian Guo, Danping Shi

ASK 2017 @ Changsha, China

Outlines

- 2 Conditional Cube Attacks
- 3 New MILP Model for Searching Conditional Cubes

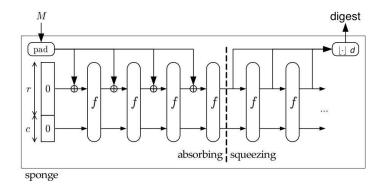
4 Main Results

Outline

- 2 Conditional Cube Attacks
- 3 New MILP Model for Searching Conditional Cubes
- 4 Main Results

SHA-3 (KECCAK) Hash Function

The sponge construction [BDPV11]



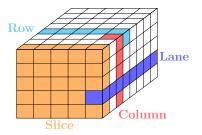
- Two parameters: bitrate r, capacity c, and b = r + c.
- The message is padded and then split into *r*-bit blocks.

KECCAK Permutation

- 1600 bits: seen as a 5 × 5 array of 64-bit lanes, A[x, y], 0 ≤ x, y < 5
- 24 rounds
- each round *R* consists of five steps:

$$R = \iota \circ \underline{\chi} \circ \pi \circ \rho \circ \theta$$

• χ : the only nonlinear operation



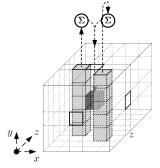
http://www.iacr.org/authors/tikz/

KECCAK Permutation

Round function: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 θ step: adding two columns to the current bit

$$C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus$$
$$A[x, 3] \oplus A[x, 4]$$
$$D[x] = C[x - 1] \oplus (C[x + 1] \lll 1)$$
$$A[x, y] = A[x, y] \oplus D[x]$$



http://keccak.noekeon.org/

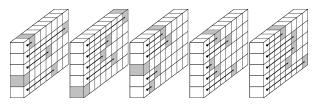
The Column Parity kernel

• If $C[x] = 0, 0 \le x < 5$, then the state A is in the CP kernel.

KECCAK Permutation

Round function: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 ρ step: lane level rotations, $A[x, y] = A[x, y] \ll r[x, y]$



http://keccak.noekeon.org/

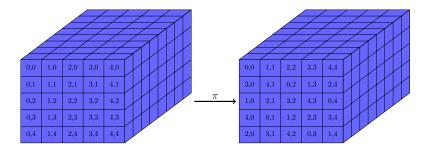
Rotation offsets $r[x, y]$							
	x = 0	x = 1	x = 2	x = 3	x = 4		
y = 0	0	1	62	28	27		
y = 1	36	44	6	55	20		
y = 2	3	10	43	25	39		
y = 3	41	45	15	21	8		
y = 4	18	2	61	56	14		

Detation offerte

Keccak Permutation

Round function: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 π step: permutation on lanes



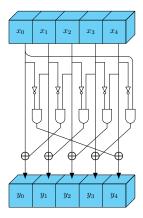
$$A[y, 2 * x + 3 * y] = A[x, y]$$

KECCAK Permutation

Round function: $\iota \circ \chi \circ \pi \circ \rho \circ \theta$

 χ step: 5-bit S-boxes, nonlinear operation on rows

$$\begin{split} y_0 &= x_0 + (x_1 + 1) \cdot x_2, \\ y_1 &= x_1 + (x_2 + 1) \cdot x_3, \\ y_2 &= x_2 + (x_3 + 1) \cdot x_4, \\ y_3 &= x_3 + (x_4 + 1) \cdot x_0, \\ y_4 &= x_4 + (x_0 + 1) \cdot x_1. \end{split}$$

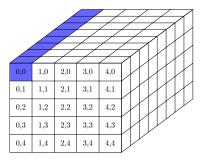


Keccak Permutation

Round function: $\boldsymbol{\iota} \circ \chi \circ \pi \circ \rho \circ \theta$

 $\boldsymbol{\iota}$ step: adding a round constant to the state

Adding one round-dependent constant to the first "lane", to destroy the symmetry.



$$\boldsymbol{A}[0,0] = \boldsymbol{A}[0,0] \oplus \boldsymbol{R}\boldsymbol{C}[\boldsymbol{i}]$$

9 / 30

Keccak Permutation

Round function

Internal state A: a 5×5 array of 64-bit lanes

$$\begin{array}{l} \theta \ \text{step} \ \ C[x] = A[x,0] \oplus A[x,1] \oplus A[x,2] \oplus A[x,3] \oplus A[x,4] \\ D[x] = C[x-1] \oplus (C[x+1] \lll 1) \\ A[x,y] = A[x,y] \oplus D[x] \\ \rho \ \text{step} \ \ A[x,y] = A[x,y] \ll r[x,y] \\ \quad - \ \text{The constants} \ r[x,y] \ \text{are the rotation offsets.} \\ \pi \ \text{step} \ \ A[y,2*x+3*y] = A[x,y] \oplus ((\ \ A[x+1,y]) \& A[x+2,y]) \\ \iota \ \text{step} \ \ A[0,0] = A[0,0] \oplus RC[i] \\ \quad - \ RC[i] \ \text{are the round constants.} \end{array}$$

The only non-linear operation is χ step.

$\underset{\texttt{KMAC}}{\operatorname{KECCAK}} \text{-} p \text{ Based Constructions}$

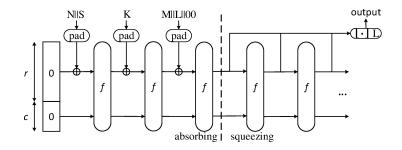
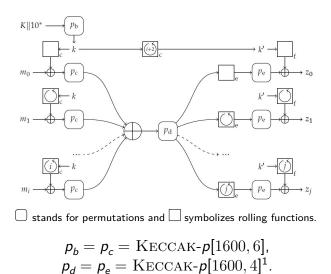


Figure: KMAC processing one message block

- Two versions: KMAC128 and KMAC256
- N and S are public strings.

KECCAK-*p* Based Constructions

Kravatte

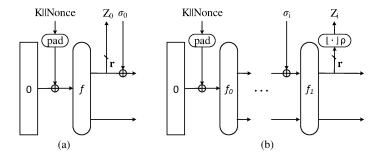


¹Version of 17-Jul-2017.

L. Song, J. Guo, D. Shi Conditional Cube Attacks on KECCAK-p Based Constructions ASK 2017 12 / 30

KECCAK-*p* Based Constructions

 KEYAK and KETJE



(a) KEYAK and (b) KETJE

Outline

2 Conditional Cube Attacks

3 New MILP Model for Searching Conditional Cubes

4 Main Results

Cube Attacks [DS09]

• Given a Boolean polynomial $f(k_0, ..., k_{n-1}, v_0, ..., v_{m-1})$ and a monomial $t_l = \wedge_{i_r \in I} v_{i_r}$, $l = (i_1, ..., i_d)$, f can be written as

 $f(k_0, ..., k_{n-1}, v_0, ..., v_{m-1}) = t_I \cdot p_{S_I} + q(k_0, ..., k_{n-1}, v_0, ..., v_{m-1})$

- q contains terms that are not divisible by t_l
- *p_{S_I}* is called the superpoly of *I* in *f*
- $v_{i_1}, ..., v_{i_d}$ are called cube variables. *d* is the dimension.
- The the cube sum is exactly

$$p_{S_l} = \sum_{(v_{i_1},...,v_{i_d}) \in C_l} f(k_0,...,k_{n-1},v_0,...,v_{m-1})$$

- Cube attacks: p_{S_l} is a low-degree polynomial in key bits.
- Cube testers: distinguish p_{S_l} from a random function. E.g., $p_{S_l} = 0$.

Conditional Cube Testers of KECCAK [HWX+17]

- Ordinary cube variables:
 - Do not multiply with any variable in the **first** round.
- Conditional cube variables:
 - Do not multiply with any variable in the first two rounds under certain conditions.

Conditional Cube Testers of KECCAK [HWX+17]

- Ordinary cube variables:
 - Do not multiply with any variable in the **first** round.
- Conditional cube variables:
 - Do not multiply with any variable in the first two rounds under certain conditions.

Properties

• 2ⁿ-dimensional cubes with 1 conditional cube variable The cube sum is **zero** for (n + 1)-round KECCAK.

Conditional Cube Testers of KECCAK [HWX+17]

- Ordinary cube variables:
 - Do not multiply with any variable in the **first** round.
- Conditional cube variables:
 - Do not multiply with any variable in the first two rounds under certain conditions.

Properties

- 2ⁿ-dimensional cubes with 1 conditional cube variable
 The cube sum is zero for (n+1)-round KECCAK.
- If the conditions involve the key, the conditional cube can be used to recover the key.
- Time complexity of the key recovery: $\frac{k}{t} \cdot 2^{2^{n+t}}$, where *t* is the number of key bits involved in the conditions.

Outline

1 Keccak

2 Conditional Cube Attacks

In the second second

- Requirements
- New MILP Model

Main Results

The expression of $b = \chi(a)$ is of algebraic degree 2: $b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$, for $i = 0, 1, \dots, 4$.

The expression of $b = \chi(a)$ is of algebraic degree 2:

 $b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$, for $i = 0, 1, \dots, 4$.

Observation

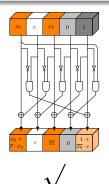
When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

The expression of $b = \chi(a)$ is of algebraic degree 2:

 $b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$, for $i = 0, 1, \dots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.

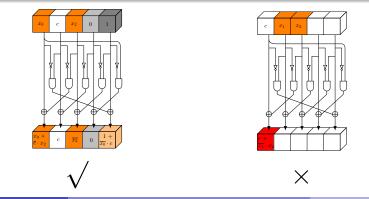


The expression of $b = \chi(a)$ is of algebraic degree 2:

$$b_i = a_i + \overline{a_{i+1}} \cdot a_{i+2}$$
, for $i = 0, 1, \dots, 4$.

Observation

When there is no neighbouring variables in the input of an Sbox, then the application of χ does NOT increase algebraic degree.



Linear Structure [GLS16]

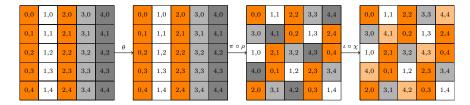


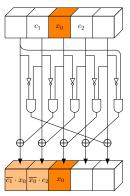
Figure: 1-round linear structure of KECCAK-p with the degrees of freedom up to 512, where \blacksquare : variables; \blacksquare : algebraic degree at most 1; \blacksquare : 1; \blacksquare : 0.

- All variables do not multiply with each other in the first round.
- **BUT** we need at least one conditional variable.

The Conditional Cube variable

Requirement of the second χ

- If an input bit of the second χ contains the conditional variable, then its neighbouring bits should be constants.
- These neighbouring bits are denoted as $s_0, s_1, ...$
- Each s_i is calculated from 11 output bits of the first round.



New MILP Model

Mixed integer linear programming (MILP) takes an *objective function obj* and a set of inequalities $M \cdot X < b$ over real numbers as input and finds solutions optimizing *obj*.

Let a[x][y][z] be the state:

$$a \xrightarrow{\pi \circ \rho \circ \theta} b \xrightarrow{\chi} c$$

A[x][y][z] = 1 if a[x][y][z] contains a cube variable:

$$A \xrightarrow{\pi \circ \rho \circ \theta} B \xrightarrow{\chi} C$$

V[x][y][z] = 1 indicates a bit condition.

Patterns of the Diffusion of χ

$$c[x] = b[x] + \overline{b[x+1]} \cdot b[x+2]^1$$

$$b[x]$$
 $b[x+1]$ $b[x+2]$ $c[x]$

¹Omit coordinates [y][z].

L. Song, J. Guo, D. Shi

Conditional Cube Attacks on KECCAK-p Based Constructions ASK 2017

017 20 / 30

Patterns of the Diffusion of χ

$$c[x] = b[x] + \overline{b[x+1]} \cdot b[x+2]^1$$

b[x]	b[x+1]	b[x+2]	<i>c</i> [<i>x</i>]
constant	constant	constant	constant

¹Omit coordinates [y][z]. L. Song, J. Guo, D. Shi Condition

Conditional Cube Attacks on KECCAK-p Based Constructions ASK 2017 20 / 30

Patterns of the Diffusion of χ

$$c[x] = b[x] + \overline{b[x+1]} \cdot b[x+2]^1$$

b[x]	b[x+1]	b[x+2]	<i>c</i> [<i>x</i>]
constant	constant	constant	constant
var	*	*	var

¹Omit coordinates [y][z].

L. Song, J. Guo, D. Shi

Conditional Cube Attacks on KECCAK-p Based Constructions ASK 2017 20 / 30

Patterns of the Diffusion of χ

$$c[x] = b[x] + \overline{b[x+1]} \cdot b[x+2]^{1}$$

<i>b</i> [<i>x</i>]	b[x+1]	b[x+2]	<i>c</i> [<i>x</i>]
constant	constant	constant	constant
var	*	*	var
constant	constant	var	var (deg ≤ 1)

¹Omit coordinates [y][z].

L. Song, J. Guo, D. Shi

Conditional Cube Attacks on KECCAK-p Based Constructions ASK 2017 20 / 30

Patterns of the Diffusion of χ

$$c[x] = b[x] + \overline{b[x+1]} \cdot b[x+2]^1$$

<i>b</i> [<i>x</i>]	b[x+1]	b[x+2]	<i>c</i> [<i>x</i>]
constant	constant	constant	constant
var	*	*	var
constant	constant	var	var (deg ≤ 1)
constant	1	var	constant

¹Omit coordinates [y][z].

L. Song, J. Guo, D. Shi

Conditional Cube Attacks on KECCAK-p Based Constructions ASK 2017

7 20 / 30

Patterns of the Diffusion of χ

$$c[x] = b[x] + \overline{b[x+1]} \cdot b[x+2]^{1}$$

b[x]	b[x+1]	b[x+2]	<i>c</i> [<i>x</i>]
constant	constant	constant	constant
var	*	*	var
constant	constant	var	var (deg ≤ 1)
constant	1	var	constant
:	:	:	:

¹Omit coordinates [y][z].

L. Song, J. Guo, D. Shi

2017 20 / 30

Patterns of the Diffusion of χ

$$B[x] = \begin{cases} 0, & b[x] \text{ is a constant;} \\ 1, & b[x] \text{ is a var.} \end{cases} \quad V[x] = \begin{cases} 0, & \text{no condidtion on } b[x]; \\ 1, & b[x] \text{ is restricted to } 0/1. \end{cases}$$

Table: Diffusion of variables through χ . Symbol '*' denotes arbitrary value.

B[x]	B[x+1]	B[x+2]	V[x+1]	V[x+2]	C[x]
0	0	0	*	*	0
1	0	0	*	*	1
1	0	1	*	0	1
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	0	1	0

Inequalities Describing the Diffusion of $\boldsymbol{\chi}$

• By generating the convex hull of the set of patterns, we get

$$\begin{split} B[x] - B[x+1] - B[x+2] - V[x+1] - V[x+2] - C[x] &\geq -2\\ -B[x] - B[x+1] + V[x+2] + C[x] &\geq 0\\ -B[x+2] - V[x+2] &\geq -1\\ B[x] + B[x+1] + B[x+2] - C[x] &\geq 0\\ -B[x] + C[x] &\geq 0\\ -B[x] + C[x] &\geq 0\\ -B[x+1] - B[x+2] + V[x+1] + V[x+2] + C[x] &\geq 0\\ -B[x] - B[x+1] &\geq -1 \end{split}$$

Modeling the Second χ

Two Cases for the Second χ

- Each neighbouring bit *s_i* of the conditional variables is calculated from 11 bits of *c*[*x*][*y*][*z*].
 - Case 1 For these 11 bits, none of them are variables, i.e., C[x][y][z] = 0;
 - Case 2 There are variables among the 11 bits and the XOR of these bits forms a linear equation which consumes 1 bit degree of freedom.

• Introduce S_i for s_i

$$S_i = \left\{ egin{array}{cc} 0, & \mbox{for Case 1;} \\ 1, & \mbox{for Case 2.} \end{array}
ight.$$

Modeling the Second χ

Patterns and Inequalities for the Second χ

If c[x][y][z] is needed for calculating s_i , then c[x][y][z] should not contain terms with uncertain coefficients.

• Patterns that exclude terms with uncertain coefficients:

Si	B[x]	B[x+1]	B[x+2]	V[x+1]	V[x+2]
0	*	*	*	*	*
1	0	0	0	*	*
1	1	0	0	*	*
1	1	0	1	1	0
1	0	0	1	1	0
1	0	1	0	0	1

Modeling the Second χ

Patterns and Inequalities for the Second χ

• Inequalities:

$$\begin{aligned} -S_i - B[x+1] - B[x+2] &\geq -2\\ -S_i + B[x] - B[x+1] + V[x+2] &\geq -1\\ -S_i - B[x+2] + V[x+1] &\geq -1\\ -S_i - B[x+1] - V[x+1] &\geq -2\\ -S_i - B[x+2] - V[x+2] &\geq -2\\ -S_i - B[x] - B[x+1] &\geq -2 \end{aligned}$$

Modeling the Search for Conditional Cubes

- Modeling the linear layer is simple.
- Set the dimension of the target cube to 2^n .
- Objective

Minimize :
$$\sum V[x][y][z]$$
.

Outline

1 Keccak

2 Conditional Cube Attacks

3 New MILP Model for Searching Conditional Cubes

4 Main Results

Application of the New Model

The new model is applicable to keyed Keccak modes, including

- Constructions with fully unknown internal state
 - ► KMAC, KRAVATTE (first attacks)
- Constructions with partially known internal state
 - ► KETJE, KEYAK (improved attacks)

KMAC and $\mathbf{K}\mathbf{R}\mathbf{A}\mathbf{V}\mathbf{A}\mathbf{T}\mathbf{T}\mathbf{E}$

Target	Key Size	Capacity	n _r Rounds	Complexity	Reference	
KMAC128	128	256	7	2^{76}	this	
KMAC256	256	512	9	2^{147}	LIIS	
KRAVATTE	128	-	8	2^{65}	this	
INRAVALLE	256	-	9	2^{129}	LIIIS	
	2 128	256/512	7	2^{72}	[HWX+17]	
Keccak-MAC		768	7	2^{75}	[LBW+17]	
RECCAR-IMAC		1024	6	$2^{58.3}$		
		1024	6	2^{41}	this	

$\ensuremath{\mathsf{KEYAK}}$ and $\ensuremath{\mathsf{KETJE}}$

Target	Key Size	n _r Rounds	Complexity	Nonce respected	Reference
	128	6	2^{37}	Yes	[DMP+15]
Lake KEYAK	128	8	2^{74}	No	[HWX+17]
	128	8	$2^{71.01}$	Yes	
	256	9	$2^{137.05}$	Yes	this
River Keyak	128	8	2^{77}	Yes	
KETJE Major	128	7	2^{83}	Yes	[LBW+17]
ITEIJE MAJOR	128	7	$2^{71.24}$	Yes	this
KETJE Minor	128	7	2^{81}	Yes	[LBW+17]
IXEIJE MIIIO	128	7	$2^{73.03}$	Yes	this
KETJE SR v1	128	7	2^{115}	Yes	[DLWQ17]
TTELSE SIL VI	128	7	2^{92}	Yes	this

In conclusion:

- Model the non-linear layer completely, and nest the two nonlinear layers in two rounds together.
- First attacks on KMAC and KRAVATTE, and improved attacks on KEYAK and KETJE.

In conclusion:

- Model the non-linear layer completely, and nest the two nonlinear layers in two rounds together.
- First attacks on KMAC and KRAVATTE, and improved attacks on KEYAK and KETJE.

Thank you for your attention!